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1 Introduction

The near-horizon limit of an extreme Kerr black hole [1, 2] is described by a geometry with

isometry group SL(2,R) × U(1) and is known either as the extremal Kerr throat [2] or as

the Near-Horizon Extreme Kerr (NHEK) geometry [3]. As reviewed in section 2.1 below,

this spacetime has many properties in common with AdS2 × S2. We will use the terms

NHEK and extreme (or extremal) Kerr throat interchangeably throughout this work.

It was recently observed that, with appropriate boundary conditions, the asymptotic

symmetry group of this spacetime contains a Virasoro algebra whose central charge is

related via Cardy’s formula to the entropy of the Kerr black hole [3]. This observation

led the authors of [3] to conjecture a full Kerr/CFT-correspondence, in analogy with the

well-established AdS/CFT correspondence [4], in which the dynamics of a gravitational
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theory with such boundary conditions would be equivalent to some chiral 1+1 CFT. As a

result, there has been a great deal of recent interest in both the NHEK spacetime and its

analogues in higher dimensions (see e.g. [5] and references therein).

However, many aspects of the proposed Kerr/CFT-correspondence remain deeply mys-

terious. For example, in modular-invariant CFT’s, Cardy’s formula gives the density of

states for large excitations above the ground state. Thus, one expects the NHEK geometry

to correspond to some highly excited state. But then, what geometry is dual to the ground

state of the CFT? Because it is extremal, [3] suggested that the NHEK geometry itself be

interpreted as a ground state, but further exploration of the dynamics may be enlightening.

A related question concerns the stability of the throat geometry. Asymptotically flat

Kerr black holes exhibit superradiance, meaning that certain modes of bosonic fields are

amplified when they scatter off the black hole [6]. If one places such black holes inside a

reflecting box [7] (or in asymptotically anti-de Sitter space [8]), these modes continually

reflect back and forth off of the black hole and the box wall. Every cycle amplifies the

waves, leading to an exponential instability. For non-extreme black holes, placing the box

wall close enough to the horizon turns off this instability due to the fact that the very short

wavelength modes are stable (as is typical for systems containing tachyons). However, the

infinite throat of the extreme Kerr black hole means that some instabilities can remain no

matter how small a box is chosen.1 One therefore expects any attempt to separate the

throat geometry from the asymptotically flat region to have instabilities.

These issues motivate a general study of solutions which agree asymptotically with the

extremal Kerr throat. The first steps are taken below. We analyze perturbations of the

throat and their back-reaction, we classify general stationary axisymmetric asymptotically-

NHEK solutions, and we study the near-horizon limits of perturbed non-extreme Kerr

black holes.

Our final conclusions will turn out to be dominated by back-reaction effects. To under-

stand the importance of back-reaction, recall that non-linearities in gravity lead to two con-

ceptually distinct effects. The first is an effect on the dynamical evolution, while the second

is an effect on the initial data that arises from the gravitational constraints. For example,

in 3+1 dimensional asymptotically flat space the presence of any energy requires the initial

data to contain a 1/r Coulomb tail. As a result, initial data of compact support is generally

not allowed, and it is the values of certain charges that determine the asymptotic fall-off

properties of the gravitational field. It is therefore important to determine whether the fall-

off properties dictated by a given charge are compatible with the specified boundary con-

ditions. If not, then that charge must vanish for all solutions with the desired asymptotics.

1A more complete argument notes that the horizon-generating Killing field of a non-extreme Kerr black

hole is timelike near the horizon, so that timelike observers sufficiently close to a non-extreme Kerr black

hole can co-rotate with the black hole, out to the so-called velocity of light surface where such co-rotating

observers must become null. For positive-energy matter, this timelike Killing field defines a positive con-

served quantity for excitations in the near-horizon region, ruling out instabilities. In contrast, the horizon-

generating Killing field of extreme Kerr is spacelike at all points near the equator outside the horizon,

no matter how far one goes down the throat. As a result, the Frolov-Thorne vacuum [9] for linear fields

discussed in [3] is not well-defined in the extreme Kerr throat [10–12].
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Since this effect is fundamentally non-linear, the linearized equations of motion will

generally admit solutions with non-zero charges, even after the desired fall-off conditions are

imposed. However, the back-reaction effects at the next order will satisfy the asymptotic

conditions only for linearized solutions in which the relevant charges vanish. For this reason,

the conditions that these charges vanish are known as “linearization-stability constraints.”

The classic example of such constraints occurs for gravity on spacetimes with compact

Cauchy slices [13–19] (e.g., for periodic boundary conditions), though the same basic effect

has recently been discussed in the context of chiral gravity [20]. In the asymptotically

NHEK context, we will argue that linearization-stability constraints require all charges

associated with the SL(2,R) × U(1) isometries to vanish.2

For this reason we begin with a discussion of back-reaction in section 2. As a part of this

analysis, we study near-horizon limits of asymptotically flat non-extreme Kerr solutions.

We seek scaling limits of such solutions which approach a given extreme Kerr throat at large

distance and show that the charges of such scaling limits always vanish when measured

relative to the relevant throat metric. We also prove that the only stationary, axisymmetric,

asymptotically-NHEK solution with a smooth horizon is the NHEK metric itself. We

interpret these results as evidence for the anticipated linearization stability constraints.

It then remains to impose these constraints on solutions to the linearized Einstein

equations. It is straightforward to analyze such solutions following the approach used by

Teukolsky [21–23] for asymptotically flat Kerr. However, the analysis is rather cumbersome

and is based heavily on both the Newman-Penrose formalism [24] (reviewed in appendix A)

and the gravitational symplectic structure, technology which may be unfamiliar to many

readers. On the other hand, a massless scalar field provides a simple toy model of linearized

gravity. We therefore treat this model in great detail in section 3, before addressing lin-

earized gravity itself in section 4. It will turn out that boundary conditions which conserve

Klein-Gordon flux necessarily break some of the SL(2,R) symmetries. As a result, some of

the SL(2,R) charges are not conserved, and their vanishing imposes a separate condition

on each Cauchy surface. This breakdown of the initial value problem is an interesting de-

parture from previous examples of linearization-stability constraints, and results in much

stronger restrictions on the allowed solutions. Within the class of generalized-Dirichlet

boundary conditions, only the trivial solution Φ = 0 is compatible with this full set of

constraints.

Section 4 is then dedicated to showing that solutions of the linearized Einstein equa-

tions behave in much the same way. Although there are many interesting technical points

in this analysis, the physics turns out to be identical to that of the much simpler scalar

field. The reader wishing to avoid the required formalism will miss little of the essential

physics by skipping over section 4 on a first reading.

In the bulk of this paper we use boundary conditions which require the metric to

asymptotically approach that of the extreme Kerr throat. Readers particularly interested

in Kerr/CFT issues should note that the boundary conditions of [3] (which we call GHSS

fall-off) are somewhat different. We discuss the implications of our arguments for GHSS

fall-off in section 5 and find that the results largely carry through.

2See section 2.4 for subtle points involving boundary gravitons.
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2 Linearization-stability constraints for the extremal Kerr throat

This section argues that the charges of any solution asymptotic to a given extremal Kerr

throat are highly constrained. This raises a number of linearization-stability issues which

we will investigate further in sections 3 and 4.

After a brief review of the extremal Kerr throat in section 2.1, we begin to probe

asymptotically NHEK solutions by analyzing general near-horizon limits of asymptotically-

flat Kerr black holes (section 2.2). If there exist non-extreme black hole solutions with

extreme Kerr throat asymptotics, one might expect that such solutions could be constructed

via such limits. This would be in parallel with, for example, the construction of planar

black holes in AdS5 from a similar scaling limit of black 3-branes. Yet we find that charges

of the limiting solutions always vanish relative to the appropriate NHEK background.

Furthermore, as shown in section 2.3, these turn out to be the only stationary axisymmetric

asymptotically-NHEK solutions with smooth horizons. Section 2.4 then interprets these

results as evidence for linearization-stability constraints, commenting on certain subtleties

involving boundary gravitons.

2.1 Brief review of the extreme Kerr throat

To orient the reader and establish conventions, we begin by recalling how the extremal Kerr

throat can be obtained as a scaling limit of the Kerr geometry [2]. The general Kerr metric

is labeled by two parameters, a mass M and angular momentum J = Ma. The resulting

black hole has temperature T̃ =
√
M2−a2

4πM(M+
√
M2−a2)

and entropy S = 2πM(M +
√
M2 − a2).

In Boyer-Lindquist coordinates (t̃, r̃, θ, φ̃), the metric takes the form

ds2 = −e2νdt̃2 + e2ψ(dφ̃+Adt̃)2 + Σ(dr̃2/∆ + dθ2) , (2.1)

where

Σ = r̃2 + a2 cos2 θ, ∆ = r̃2 − 2Mr̃ + a2 , (2.2)

e2ν =
∆Σ

(r̃2 + a2)2 − ∆a2 sin2 θ
, e2ψ = ∆ sin2 θe−2ν , A = −2Mr̃a

∆Σ
e2ν . (2.3)

For the extremal solution a = M, S = 2πM2 = 2πJ .

Defining a one-parameter family of new coordinate systems

r̃ = M + λr, t̃ = t/λ, φ̃ = φ+ t/2Mλ , (2.4)

and taking the scaling limit λ→ 0 yields

ds2 =

(

1 + cos2 θ

2

)

[

−fdt2 + dr2/f + r20dθ
2
]

+
2r20 sin2 θ

1 + cos2 θ
(dφ+ r/r20dt)

2 , (2.5)

with r20 = 2M2 and f = r2/r20. This spacetime is known either as the extremal Kerr throat

or as the Near-Horizon Extreme Kerr (NHEK) geometry. For fixed θ, the term in square

brackets becomes the metric on AdS2 in Poincaré coordinates. As a result, we refer to

(t, r, θ, φ) as Poincaré coordinates for the extremal Kerr throat.
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The throat geometry inherits many properties from the above-mentioned AdS2. For

example, a geodesically complete spacetime can be obtained by performing the coordinate

transformation

r = (1 + y2)1/2 cos τ + y, t =
(1 + y2)1/2 sin τ

r
, φ = ϕ+ log

∣

∣

∣

∣

cos τ + y sin τ

1 + (1 + y2)1/2 sin τ

∣

∣

∣

∣

, (2.6)

which takes Poincaré AdS2 to the standard global coordinates on AdS2. The result is again

of the form (2.5) with r replaced by y, t replaced by τ , φ replaced by ϕ, and f = 1+y2/r20 .

The analytic extension of the solution to the coordinate range y, τ ∈ (−∞,∞) is then

geodesically complete. This form of the metric is known as the NHEK geometry in global

coordinates. One notes that it has two boundaries, at y = ±∞.

The throat geometry also inherits the isometries of AdS2. These are well-known to

form an SL(2,R) algebra and are given by

η−1 =

(

1

2r2
+
t2

2

)

∂t − tr∂r −
1

r
∂φ, η0 = t∂t − r∂r, η1 = ∂t , (2.7)

in Poincaré coordinates. The Lie brackets of these vector fields satisfy

[η0, η±1] = ∓η±1, [η1, η−1] = η0. (2.8)

There is also one additional Killing field, ξ0 = ∂φ, which commutes with all ηi. For

future reference we note that, using the particular diffeomorphism (2.6), the global time

translation is ∂τ = 1
2η1 + η−1.

The SL(2,R) Killing fields are all closely related. Indeed, the conjugacy class of a

non-zero element of the Lie algebra of SL(2,R) is determined by its norm with respect to

the Cartan-Killing metric, for which the associated quadratic form is 2η1η−1 − η2
0 (up to

normalization), and a sign (future/past-directed) for null and timelike elements. Thus, all

null elements of the Lie algebra are related by conjugation and multiplication by a real

number. Furthermore, any Lie algebra element can be expressed as a linear combination

of null elements, in the same way that one may choose a basis of null vectors for 2+1

Minkowski space. Since the Poincaré time translation η1 is a null element, it follows that

one may think of the general SL(2,R) vector field as a linear combination of isometries,

each of which is just the Poincaré time translation. Because the isometries are so closely

related, we shall take care to label the various charges by the relevant Killing fields; e.g.,

we shall speak of Qηi
and Qξ0 .

Despite the many similarities of (2.5) to AdS2 × S2, there are also some important

differences. For example, the Poincaré time translation becomes spacelike near the equator

(θ = π/2) of the sphere.3 The time translation ∂τ associated with global coordinates also

becomes spacelike near the equator for large r. In fact, any linear combination of the above

Killing fields becomes spacelike in some region of the spacetime.

3This is just the statement mentioned in footnote 1 that the horizon-generating Killing field of extreme

Kerr is spacelike near the equator, even in the near-horizon region.
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2.2 Throat limits of general Kerr black holes

As noted in the introduction, we wish to argue that solutions approaching (2.5) at large r

are highly constrained. We begin by seeking additional solutions which can be obtained as

scaling limits of asymptotically flat non-extreme black holes. In parallel with the AdS2×S2

case studied in [25], every such metric turns out to be diffeomorphic to the original extreme

throat (2.5). These scaling limits will also lead to a physical argument for linearization-

stability constraints in section 2.4.

The asymptotically flat Kerr black holes with which we begin have two non-zero

charges, associated with time-translations and rotations. We will use conventions in which

Q∂t̃
= −M and Q∂

φ̃
= J = aM , so that Qξ is a linear function of ξ. We consider one-

parameter families of black holes specified by giving M,J as functions of the parameter

(λ). We take the scaling limit to be given by (2.4) up to subleading corrections. In order to

develop a throat region, we require that J approach some extremal values J →M2 → r20/2

for some r0 > 0 as λ → 0. It is also useful to introduce a non-extremality parameter ǫ̃

defined by

ǫ̃2 = M2 − J2/M2, (2.9)

so that ǫ̃→ 0.

We require the coordinate transformation to agree with (2.4) at leading order. In

particular, we have

t̃→ t/λ (2.10)

where the arrow (→) indicates that we allow arbitrary subleading corrections. The rate at

which ǫ̃ must vanish can then be determined by noting that any solution with a smooth

horizon must have finite temperature T with respect to the rescaled time coordinate t.

Since horizon temperature can be related to the period of imaginary time, (2.10) is enough

to determine the scaling behavior of the temperature:

T → T̃

λ
=

ǫ̃/λ

4πM(M + ǫ̃)
→ ǫ̃/λ

2πr20
. (2.11)

Thus, in order to obtain a finite temperature, we must require ǫ̃ → λǫ for some fixed ǫ.

Using J2 = M4 − ǫ̃2M2, it follows that

J(λ) →M2(λ) − λ2ǫ2

2
; (2.12)

i.e., that the effects of non-extremality enter only at second order in λ.

We can now use (2.12) to show that charges associated with the limiting solution do not

depend on the non-extremality parameter ǫ. The point is that, since solutions are invariant

under both t- and φ-translations, the charges can be expressed in terms of Komar integrals

and so may be evaluated on any closed two-surface in the geometry; i.e., they may be

evaluated at any finite position without taking the limit r → ∞. As a result, the charges

of the asymptotically NHEK solutions obtained from our scaling limits must be given by

limits of the asymptotically flat charges. Now, it is important to recall that the charges

– 6 –
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depend on the choice of vector field. Nevertheless, we have

∂φ → ∂φ̃, ∂t →
1

λ

(

∂t̃ +
1

2M
∂φ̃

)

. (2.13)

Since these expressions contain only one factor of λ−1 while ǫ2 appears in (2.12) multiplied

by λ2, the λ → 0 limit of any charge is independent of ǫ. Now, applying the scaling limit

directly to the charge Q∂t yields an infinite result as λ → 0 which must be regulated by

subtracting the charge of some reference scaling limit. But even such regulated results

cannot depend on ǫ. It follows that scaling limits of non-extreme Kerr black holes yield

precisely the same charges Q∂φ
and Q∂t as do scaling limits of extreme Kerr black holes,

independent of the temperature T .

When ǫ 6= 0, the actual metric obtained from (2.4) in the λ→ 0 limit is not (2.5), but

instead

ds2 =
1 + cos2 θ

2

(

−rT (rT − 2kT )

r20
dt2T +

r20dr
2
T

rT (rT − 2kT )
+ r20dθ

2

)

+
2r20 sin2 θ

1 + cos2 θ

(

dφT +
rT − kT
r20

dtT

)2

, (2.14)

where r20 = 2M2 as before, and kT = πr20T. As in (2.11), T is the Hawking temperature

of the resulting black hole. One might also attempt to obtain more general metrics by

modifying sub-leading terms of (2.4), but we have found no other useful limits of this form.

Furthermore, any such limits would be restricted by the uniqueness results of section 2.3.

In (2.14) we have renamed the coordinates (tT , rT , φT ) due to the fact that, as in the

AdS2 × S2 case [25], the diffeomorphism

rT = T (r20 − rt), etT /T =
r0r

√

r2t2 − r40
, φT = φ+ log

√

1 − 2k/rT (2.15)

takes (2.14) to (a subset of) the standard Poincaré NHEK solution (2.5).4 As a result,

one may view (2.14) as the NHEK geometry written in terms of a one-parameter family

of coordinate systems (tT , rT , φT , θ). In order to help the reader visualize the various

systems of coordinates, figure 1 displays the global, Poincaré, and finite-temperature time-

translations and the associated horizons on a Penrose diagram of AdS2.

For later purposes we note that ∂
∂tT

maps to −T−1η0 under (2.15); i.e., to a spacelike

element of the SL(2,R) isometry algebra. Since any other spacelike element is related

by conjugation, and since spacelike elements form a basis for the Lie algebra of SL(2,R),

it follows that one may also think of a general element of SL(2,R) as simply a linear

combination of finite-temperature time-translations.

Although we derived the condition ǫ̃ → λǫ by requiring the horizon to be smooth, it

is straightforward to check that taking ǫ̃ to vanish more slowly leads to a metric which

diverges everywhere, and not just at the horizon. Thus, even without requiring regularity

in the interior, we find that all scaling limits of Kerr which agree asymptotically with (2.5)

have charges Q∂t and Q∂φ
identical to (2.5). Applying the technology of e.g. [26] to (2.14),

one readily checks that this statement holds for the other SL(2,R) charges as well.

4We thank Geoffrey Compère for helping to discover this.
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Figure 1. Penrose diagrams of AdS2 showing coordinate patches covered by (a) global coordinates,

(b) Poincaré coordinates, (c) finite temperature coordinates. In each case the associated time

translation and any horizons are shown.

2.3 Stationary axisymmetric solutions

As advertised above, we now classify all stationary, axisymmetric, asymptotically-NHEK

vacuum solutions having smooth horizons. Since it is clear that in (2.5), the norm of ∂/∂t

changes sign even asymptotically as one changes the polar coordinate θ, we will define

”stationary, axisymmetric” in the context of asymptotically-NHEK geometries to simply

mean geometries with R × U(1) isometry group. They are given by the following unique-

ness theorem:

Theorem 1 Any asymptotically NHEK vacuum solution with an R×U(1) isometry group

and a smooth horizon (either extremal or non-extremal) is diffeomorphic to the NHEK

solution itself.

Proof. For non-extreme horizons, our proof will be similar to proofs of the uniqueness of

the (asymptotically flat) Kerr black hole. The only change is in the boundary conditions

at infinity. (We will see that the proof is actually somewhat easier with NHEK boundary

conditions.) We follow the approach in [27, 28] which is based on earlier work by Mazur [29].

Since the argument is identical to these earlier proofs except for the asymptotic boundary

conditions, we will just give the main ideas. For technical details, we refer the reader

to [27, 28, 30]. The proof for extremal horizons that is given here can be extended to prove

the uniqueness of asymptotically flat extremal Kerr black holes. Details will be given

elsewhere [31].

Stationary, axisymmetric metrics can be written in the Papapetrou form,

ds2 = −ρ
2

F
dt2 + F (dφ+Adt)2 + e2ν(dρ2 + dz2) , (2.16)

where F,A, ν are functions of ρ and z only. Regularity along the axis requires that F

vanish as ρ2 and no faster. Given a solution for F and A, ν is then determined in terms of

them by first order equations. Rather than work with A, it is convenient to work with the

potential χ for the twist of the ξ0 = ∂φ Killing field:

dχ = ∗(ξ0 ∧ dξ0). (2.17)

– 8 –
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A key role in the proof will be played by the following 2 × 2 matrix constructed from the

norm and twist of ξ0:

Φ =
1

F

(

1 −χ
−χ F 2 + χ2

)

. (2.18)

For the NHEK geometry, the twist potential is

χNHEK = − 4 cos θ

1 + cos2 θ
r20 (2.19)

and Φ is a function of θ only:

ΦNHEK =
1

2r20 sin2 θ

(

1 + cos2 θ 4r20 cos θ

4r20 cos θ 4r40(1 + cos2 θ)

)

. (2.20)

This is true for both the Poincaré (2.5) and finite temperature (2.14) forms of the NHEK so-

lution. The relation between θ and (ρ, z) depends on the temperature, as we discuss below.

For a general solution, the matrix Φ is symmetric, has positive trace and unit deter-

minant. It is therefore positive definite and can be written as Φ = STS for some matrix S

with detS = 1. The equation satisfied by Φ is most easily expressed by viewing ρ and z

as cylindrical coordinates in an auxiliary flat Euclidean R
3, with derivative ∇i. Viewing Φ

as a rotationally invariant matrix in this space, the vacuum Einstein equation implies

∇i(Φ−1∇iΦ) = 0 , (2.21)

where this equation holds everywhere except possibly the axis ρ = 0.

Suppose that we have two axisymmetric solutions Φ1 and Φ2 to this equation. Define

σ = Tr(Φ2Φ
−1
1 ) − 2, (2.22)

or, in terms of the norm and twist of ξ0,

σ =
(χ1 − χ2)

2 + (F1 − F2)
2

F1F2
. (2.23)

Thus σ ≥ 0. If in addition we set

Ni = S2(Φ
−1
2 ∇iΦ2 − Φ−1

1 ∇iΦ1)S
−1
1 , (2.24)

then σ satisfies the following “Mazur identity”

∇2σ = Tr(NT
i N

i), (2.25)

where again this equation holds everywhere except possibly the axis. Note that the right

hand side is nonnegative.

The requirements that ∇2σ ≥ 0 and σ ≥ 0 impose strong constraints on σ. If we can

show that σ is globally bounded on R
3 (including the axis) and vanishes at infinity then it

follows that σ = 0 everywhere [32]. This, in turn, implies that Φ1 = Φ2 and hence the two

solutions agree.

To show that σ is indeed bounded and vanishing at infinity, we consider the cases of

degenerate and nondegenerate horizons separately.
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Case 1: Nondegenerate horizon. The finite temperature form of the NHEK geom-

etry (2.14) depends on two parameters, (r0, kT ) related to the angular momentum J and

Hawking temperature T by r20 = 2|J | and kT = πr20T . It can be put into the Papapetrou

form by defining

ρ =
√

rT (rT − 2kT ) sin θ, z = (rT − kT ) cos θ . (2.26)

The horizon at rT = 2kT gets mapped into the “rod” ρ = 0 and −kT ≤ z ≤ kT corre-

sponding to the closure of the region along the axis for which F = |ξ0|2 > 0. Now consider

a general nondegenerate (stationary, axisymmetric) horizon. Since the two-plane spanned

by ∂t and ∂φ becomes null at the horizon, ρ must vanish there. The horizon thus defines

a similar rod, by the closure of the finite subset of the axis where F > 0. Now let Φ1 be

any axisymmetric solution to the Φ equation (2.21) with a nondegenerate horizon and set

Φ2 to be the NHEK solution with the same length rod and same angular momentum. On

the horizon, Φ is finite away from the endpoints of the rod, so σ is bounded. At infinity,

since both solutions approach ΦNHEK which itself is bounded, σ → 0.5 Finally, it remains

to check the behavior of σ on the rotation axis. This is a potential problem since Φ itself

diverges there like 1/ρ2. However one can show that σ remains bounded as follows: Since

the rotational Killing vector ξ0 vanishes on the axis, its twist vector vanishes there and

hence the twist potential χ is constant along the axis. Since the axis goes out to infinity,

χ must have the value determined by the asymptotic NHEK geometry and hence χ1 = χ2

on the axis. Since dχ must vanish on the axis, χ1 − χ2 = O(ρ2) near the axis. Since F

vanishes as ρ2 and no faster near the axis, (2.23) shows that σ indeed remains bounded

near the axis. Hence σ is globally bounded on R
3 and vanishes at infinity. Therefore it

must vanish everywhere and Φ1 = Φ2. This shows that the only stationary axisymmetric

asymptotically NHEK solution with a nondegenerate horizon is the NHEK geometry itself.

Case 2: Degenerate horizon. It was shown in [33] that the near horizon geometry

of an extremal rotating vacuum black hole is given by the NHEK solution. To see the

connection between this statement and the theorem we wish to prove, consider the NHEK

solution in the form (2.5). The degenerate horizon is at r = 0 and the asymptotic region is

r = ∞. The result in [33] shows that near r = 0 a general solution must agree with NHEK,

and our boundary condition requires that at large r the general solution must again agree

with NHEK. In fact, in these two limits the r0 parameters in the NHEK solutions must

agree since they are determined by the angular momentum J , which can be computed at

any r via a Komar integral. Nonetheless, a priori, there could be many solutions with

different radial dependence which interpolate between these two regimes.

To put (2.5) into standard form, note that the (r, θ) part of the metric is conformal to

dr2 + r2dθ2, so if one sets

ρ = r sin θ, z = r cos θ, (2.27)

5In the usual asymptotically flat case, Φ is not bounded at infinity and this step requires more work.

The boundary condition we need here is simply that F = FNHEK+ subleading terms, and χ = χNHEK+

subleading terms, so that Φ = ΦNHEK+ terms that vanish asymptotically. The astute reader may note that

this is a slightly stronger boundary condition than that used in [3], a point which will be discussed further

in section 5.
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then (2.5) takes the form (2.16). In other words, in this case, the radial coordinate in (2.5)

is the standard radial coordinate in the auxiliary space R
3. In particular, the horizon

corresponds to the origin of this space. Note that ΦNHEK has a direction dependent limit

there. However, since Φ1 and Φ2 must agree with ΦNHEK near r = 0, σ → 0 at r = 0.

Similarly, σ → 0 at large r by our boundary conditions. Along the axis, σ remains bounded

by the essentially same argument as in the nondegenerate case, though see [31] for additional

discussion of subtleties where the axis meets the horizon. Hence, σ is globally bounded

and must vanish. This completes the proof.

It is likely that one can also prove uniqueness of the NHEK solution in global coordi-

nates, where there are no horizons. However in this case, there are two asymptotic regions

and the coordinate ρ is no longer a good global coordinate. A proof would require further

study of solutions near the critical points of ρ.

2.4 Linearization-stability constraints

Let us now pause to contemplate the physical implications of our results. We begin by

returning to scaling limits of asymptotically flat vacuum solutions, but this time we consider

a nearly-extreme Kerr black hole perturbed by a small amount of gravitational radiation.

Here it is useful to suppose that we work in some coordinate patch that covers both sides

of the Einstein-Rosen bridge and thus includes two asymptotic regions. Recall that the

charges can differ in the two asymptotic regions, with this difference being governed by the

details of the perturbation.

Suppose that, at some time t̃ = 0, the gravitational radiation is confined to a region

deep within the throat. For simplicity we assume that the initial data agrees exactly with

that of Kerr outside of a compact region.6 Under what conditions can one find a scaling

limit of this solution asymptotic to (2.5)? For simplicity, let us assume that the masses

and angular momenta of the two asymptotic regions agree (up to appropriate signs), as is

the case when there is a symmetry that exchanges the asymptotic regions. In this case, our

scaling limit must approach (2.5) with the same value of r0 as either y → ∞ or y → −∞.

It is clear that one must push the radiation far down the throat in the desired limit.

Thus, the throat region outside the radiation becomes approximately that of some Kerr

black hole. So, outside the radiation, the problem reduces to the one studied above.

However, the diffeomorphism invariance of gravitational theories requires that the charges

be given entirely by boundary terms. As a result, the charges should depend only on the

metric in this exterior region and, by the argument above, must agree with those of (2.5)

for the given value of r0. If no radiation is present, this is one of the limits just discussed.

The result is therefore a metric of the form (2.14) for some T > 0 or (2.5) for T = 0.

6 The results of [34] state that, given essentially arbitrary asymptotically flat initial data (call it Σ) and

a compact set K1, one can construct another initial data set (Σ̂) which agrees precisely with Σ inside K1,

but such that outside of some larger compact region K2 the new data Σ̂ is exactly that of Kerr for some

M, J . Moreover, one can choose Σ̂ such that M, J are arbitrarily close to the mass and angular momentum

of Σ. While [34] gives no bounds on the size of K2, it is natural to suppose that K2 can be taken to lie far

down the throat in any limit in which K1 is also pushed far down the throat.
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Although it is convenient to think of gravitational charges as boundary terms, they

may also be expressed as bulk integrals by using the gravitational constraints. Thus, the

condition that the same charges be obtained at each boundary (and, furthermore, that

they agree with those of (2.5)) restricts the radiation allowed in the throat. We can

summarize this restriction simply in the limit where the perturbation is small, so that it

defines a solution to the linearized Einstein equations. The linearized theory admits a

conserved charge Qlin
ξ for each isometry ξ of the background. Consider in particular the

time translation ∂tT and rotation ∂φT
of (2.14). With appropriate choices of signs and in the

perturbative limit, each linearized charge is the difference between two asymptotic charges

(one on each boundary). It follows that the small-amplitude limit of such solutions can

be obtained from a scaling limit of asymptotically flat solutions with vanishing linearized

charges Qlin
∂tT

and Qlin
∂φT

.

The above scaling limits suggest that asymptotically NHEK perturbations may be

subject to the linearization-stability constraints Qlin
∂tT

= −T−1Qlin
∂η0

= 0 and Qlin
∂φT

= 0.

Since every SL(2,R) element is a linear combination of finite-temperature time-translations,

the charges Qlin
ηi

should vanish for the other SL(2,R) generators as well. One may also

expect such results based on the analogy with AdS2 × S2. It is easy to find linearized

solutions for, say, massive scalar fields on AdS2. However, the results of [25] show that these

solutions cannot be extended to non-linear scalar-Einstein-Maxwell solutions asymptotic to

AdS2 ×S2 unless a certain integral of the stress tensor vanishes. This result appears to be

closely related to the Birkhoff-like theorem [35] stating that the only spherically symmetric

solutions of 4d Einstein-Maxwell theory are the Reissner-Nordstrom family of solutions

and AdS2 × S2.

One might ask if there can be more general asymptotically-NHEK solutions which are

simply not given by the scaling limits discussed above. While a complete treatment of

this loophole is beyond the scope of the current work, we showed in section 2.3 that all

stationary, axisymmetric solutions asymptotic to (2.5) and having a regular horizon are

diffeomorphic to either (2.5) or (2.14) for some T . This result supports the conjecture

that any solution asymptotic to (2.5) is diffeomorphic to a solution whose charges are

determined by r0. Such a conjecture would in turn imply linearization-stability constraints

for the SL(2,R) × U(1) charges. In the rest of this work, we will assume linearization-

stability constraints of this form.

The astute reader may note that our discussion thus far has ignored all issues related to

boundary gravitons. We now pause briefly to address such concerns. Recall that boundary

gravitons are excitations generated by diffeomorphisms that, because of the particular

boundary conditions imposed in a given problem, are not pure gauge; i.e., that they are

non-degenerate directions of the symplectic structure. However, their restriction to any

subset of the spacetime which does not reach the boundary is pure gauge. As a result, our

scaling argument above forbade non-trivial boundary gravitons through the requirement

that the solution be precisely (2.5) outside some compact region at t = 0. Note also that

section 2.3 classified solutions only up to diffeomorphisms, and so placed no restrictions on

boundary gravitons.
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As a result, our linearization-stability constraints need not apply to boundary gravi-

tons, which must be analyzed separately. The properties, and in fact the very existence, of

boundary gravitons depend on the particular choice of boundary conditions. Here we sim-

ply note that, as discussed in that reference,7 the Kerr/CFT boundary conditions of [3] lead

only to boundary gravitons associated with the Virasoro generators of [3]. Since η1 and η0

commute with the Virasoro generators, it follows that the boundary gravitons do not carry

either of the charges Qη0 or Qη1 . One can check that they also carry no Qη−1
charge, and

that their U(1) charges are determined by their higher Virasoro charges. Thus, one may

also think of these boundary gravitons as satisfying a slightly modified U(1) linearization-

stability constraint. It will not be necessary to distinguish below between the simple U(1)

linearization-stability constraint (which requires the linearized charge to vanish) and the

modified constraint (which determines the U(1) charge in terms of the Virasoro charges)

satisfied by boundary gravitons.

3 Linear scalar fields

Having motivated the existence of linearization-stability constraints, we now investigate the

extent to which they are consistent with the dynamics of linear fields. Our goal is to study

linearized gravity. However, it is useful to first consider linear scalar fields propagating

on (2.5). In a combined scalar plus gravity theory, the linearization-stability constraints

could receive contributions from both fields. But it is interesting to consider a toy model

in which we impose Qlin
ηi

= 0 and Qlin
ξ0

= 0 on the scalar field alone. We will see in section 4

that this toy model captures all the essential physics of gravitational perturbations, though

much less technology is required to analyze the scalar case.

3.1 The linear scalar wave equation

We begin with the massless Klein-Gordon equation ∇2Φ = 0. (This Φ should not be

confused with the matrix Φ of section 2.3). As noted in [2], this equation is separable in

the extreme Kerr throat. It is convenient to set r0 = 1. For Φ = e−iωte+imφΘ(θ)R(r), one

then obtains a radial equation

(fR′)′ +

(

(ω +mr)2

f
+m2 −K

)

R = 0, (3.1)

where in Poincaré coordinates f = r2 and in global coordinates f = 1 + r2. The corre-

sponding angular equation is

1

sin θ
(sin θ Θ′)′ +

(

K − m2

sin2 θ
− m2

4
sin2 θ

)

Θ = 0, (3.2)

whose solutions are deformations of standard spherical harmonics. In particular, for m = 0

we have axisymmetric spherical harmonics Θ = Yℓ,m=0 so that Kℓ,m=0 = ℓ(ℓ+1). For other

7 In addition to the vector fields stated in eqn (5.2) of [3], the GHSS fall-off conditions given by eqn (5.1)

of [3] are also invariant under diffeomorphisms associated with vector fields which asymptote to y∂y − τ∂τ .

After the additional extremality condition Q∂τ
= 0, the charge associated to y∂y − τ∂τ vanishes identically,

and so it is not an element of the asymptotic symmetry group.
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values of m, the spectrum of K will again be discrete and we can label the eigenvalues

Kℓ,m. It is natural to take ℓ to be an integer satisfying ℓ ≥ m as for standard spherical

harmonics. Adding a (mass)2 term (of either sign) to the Klein-Gordon equation would

merely shift the value of K which, as we will see, leaves the qualitative behavior unchanged.

For general m 6= 0 the spectrum of K must be found numerically. Some analysis for

small m was performed in [2]. However, it is useful to consider solutions with large angular

momentum localized near the equator θ = π/2. In this regime one may expand (3.2) around

θ = π/2 to find

Θ′′ +

(

K − 5m2

4

)

Θ + O(θ − π/2) = 0, (3.3)

whose solutions are just plane waves Θ ≈ eip(θ−π/2) with K ≈ p2 + 5m2

4 . While exact

eigenstates of (3.2) may not be localized near the equator, it is clear that one can find

wavepackets with 〈K〉 ≈ 5m2

4 + O(m) so that the spectrum of K must contain eigenvalues

of this form. Furthermore, for given m ≫ 1 these should be the lowest eigenvalues K. In

other words, we conclude

Kℓ=m,m =
5

4
m2 + O(m). (3.4)

The radial equation proves to be easier to study analytically. We will discuss the exact

solutions shortly, but it is useful to first note that in the large r limit one finds power law

solutions with

R ≈ r∆, ∆ = −1

2
±
(

K − 2m2 +
1

4

)1/2

. (3.5)

It is here that one finds an interesting difference between (2.5) and AdS2 × S2. Note

that the quantity K − 2m2 plays the role of an effective mass on the r, t plane. On

AdS2 × S2, Kaluza-Klein reduction of a massless scalar leads to a tower of states with

positive (mass)2 in AdS2. In the NHEK geometry, while K − 2m2 can be arbitrarily

positive for, say, axisymmetric modes, we see from (3.4) that it can also be arbitrarily

negative for maximally rotating modes. As a result, reduction on the sphere effectively

leads to a bi-directional tower of states which includes arbitrarily tachyonic masses. In

particular, for K < Kcrit = 2m2 − 1/4, the exponent ∆ becomes complex so that R(r) is

oscillatory. In anti-de Sitter space, this happens only for scalars with masses below the

Breitenlohner-Freedman (BF) bound [36] and generally leads to instabilities. We will see

that this is also true of oscillatory modes in the NHEK geometry.

To discuss exact solutions to (3.1), it is useful to write R ≈ r−
1

2
+µ where

µ2 = K − 2m2 + 1/4. (3.6)

We work in the Poincaré patch for simplicity, and to aid comparison with the graviton

case. A brief discussion of scalars in global coordinates is provided in appendix B. The

precise form of the solution and spectrum differ slightly in these two cases but the physics

is essentially the same.

Rewriting (3.1) in terms of µ and m yields

(r2R′)′ +

(

1

4
− µ2 +

ω2

r2
+

2mω

r

)

R = 0, (3.7)
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which, under the variable change z = −2ωi/r, becomes Whittaker’s equation:

R′′ +

(

−1

4
+
im

z
+

1/4 − µ2

z2

)

R = 0. (3.8)

In general, the linearly independent solutions are given by the Whittaker functions

Mim,µ(−2iω/r) and Wim,µ(−2iω/r) (see e.g., [37]). Below, we write formulas for the

generic case 2µ /∈ Z. The special cases 2µ ∈ Z can be recovered by careful evaluation

of the appropriate limits. The only novel feature is the appearance of a logarithm in the

large r expansion for µ = 0, a case that one does not expect to arise for massless scalars.

3.2 The inner product and boundary conditions

A central object in the study of scalar fields is the Klein-Gordon current

ja(Φ1,Φ2) = −i(Φ1∂aΦ
∗
2 − Φ∗

2∂aΦ1). (3.9)

Conserved charges are readily calculated from this current, and the associated Klein-

Gordon norm

ΩΣ(Φ1,Φ2) =

∫

Σ

√
gΣ jata dθdφdr, (3.10)

plays a key role in quantizing the field and in constructing the classical phase space.

In (3.10), ta is the unit one-form normal to the spatial hypersurface Σ and gΣ is the induced

metric on Σ. At least in anti-de Sitter space, choices of boundary conditions under which

ΩΣ is finite and conserved are closely related to those which define a self-adjoint Hamil-

tonian, and thus which have a well-defined Cauchy problem in the sense of L2 functions.

This can be seen by comparing the analogue of our discussion below with e.g. [38].

We therefore require the norm (3.10) to be finite and conserved. Let us first examine

the normalizeability of our asymptotic solutions r−
1

2
+µ at large r. Modes with Re[µ] < 0

(“fast fall-off modes”) are always normalizeable at infinity, as are in fact all modes with

Re[µ] < 1/2. In particular, this includes all modes with imaginary µ.

Since we work in Poincaré coordinates, we must also consider normalizeability at the

horizon. At nonzero frequency, the horizon is an irregular singular point and any solution

behaves as a superposition of modes with R ∼ exp(±iω/r). For real frequency, this is

always delta-function normalizeable at r = 0. But this is no longer the case for complex

frequencies. In the following discussion we will consider frequencies in the upper half plane,

ω = |ω|eiγ where 0 ≤ γ ≤ π, so that normalizeability requires the exp(+iω/r) behavior

near the horizon for γ 6= 0, π. The situation for the lower half plane is analogous, with

appropriate changes of signs. In terms of the Whittaker functions, for Im[ω] > 0 the

solution normalizeable on the Poincaré horizon is

R(r) ∝Wim,µ(−2iω/r). (3.11)

At large radius, (3.11) is R ∼ Ar−1/2+µ +Br−1/2−µ with

A

B
=
eiµ(π−2γ)Γ(2µ)Γ(1

2 − µ− im)

|2ω|2µΓ(−2µ)Γ(1
2 + µ− im)

. (3.12)
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It is illustrative to consider boundary conditions which act separately on each harmonic

on the squashed sphere; i.e., which leave modes with different values of ℓ,m uncoupled.

Since our theory is a toy model for linearized gravity, we consider linear boundary condi-

tions: Aℓ,m = αℓ,mBℓ,m for each (ℓ,m). To ensure a good classical phase space and the

right setting for quantization, we must impose boundary conditions that conserve the Klein-

Gordon norm; i.e., the flux through a constant r surface must vanish at each time as r → ∞:

F(Φ1,Φ2) =

∫

r=∞

√−γ jara dθdφ = 0, (3.13)

where ra is a unit one-form normal and γab is the induced metric on surfaces of constant

r. Noting that modes with different (ℓ,m) are orthogonal, let us consider the flux for a

solution asymptotically of the form R ∼ Ar−1/2+µ +Br−1/2−µ. We have

F(Φ,Φ) ∼ (µ∗ − µ)|A|2rµ+µ∗ + (µ− µ∗)|B|2r−µ−µ∗ (3.14)

+ (µ+ µ∗)BA∗rµ
∗−µ − (µ+ µ∗)AB∗rµ−µ

∗

+ . . . . (3.15)

For real µ (power law modes), the condition F = 0 becomes |B|2(α − α∗) = 0, which

is solved for αℓ,m ∈ R. For pure imaginary µ (oscillatory modes), the condition F = 0

becomes |B|2(1 − |α|2) = 0, which is solved for αℓ,m = eiβℓ,m, βℓ,m ∈ R.

For power law modes, (3.12) must be real. This requires

e2iµ(π−2γ) =
cosh π(m+ iµ)

cosh π(m− iµ)
, (3.16)

and restricts frequencies with Im[ω] > 0 to satisfy

α = −|2ω|−2µΓ(1 + 2µ)

Γ(1 − 2µ)

∣

∣

∣

∣

∣

Γ(1
2 + im+ µ)

Γ(1
2 + im− µ)

∣

∣

∣

∣

∣

. (3.17)

It is clear that (3.16) admits at most one solution for π > γ > 0, and numerical investiga-

tions show that indeed a solution always exists for |µ| < 1/2. On the other hand, there are

no solutions to (3.17) for a certain sign of α ∈ R. In that case, no frequencies are allowed

with Im[ω] > 0, and one may check that the same is true for Im[ω] < 0. All solutions have

Im[ω] = 0 and are stable. For the other sign of α, there is a single unstable mode. Perhaps

the most natural choice for α is the so-called generalized Dirichlet boundary condition,

which corresponds to the borderline case α = 0 (equivalently, A = 0), where we now take

µ > 0. Since the right-hand-side of (3.17) cannot vanish, this boundary condition again

allows only real frequencies.

Now consider the oscillatory modes µ = ik with k ∈ R. Since |α| = 1, (3.12) requires

γ =
π

2
+

1

4k
ln

(

coshπ(k +m)

coshπ(k −m)

)

(3.18)

for Im[ω] > 0. This is in fact a monotonically increasing function of m with limm→±∞ =
π
2 ± π

2 , so that a solution in the desired range exists for all k,m.
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The particular value of the phase β determines the magnitudes of the allowed frequen-

cies through

exp(iβ) = −|2ω|−2ik Γ(1 + 2ik)

Γ(1 − 2ik)

√

Γ(1
2 − ik − im)Γ(1

2 − ik + im)

Γ(1
2 + ik − im)Γ(1

2 + ik + im)
. (3.19)

Since the shift |ω| → |ω|eπ/k is a symmetry of (3.19), for any choice of β there are an

infinite number of unstable modes logarithmically distributed in frequency along the ray

arg(ω) = γ.

3.3 The linearization-stability constraints

Taking the linear Klein-Gordon field as a toy model of linearized gravity, it is interesting

to seek solutions for which all SL(2,R)×U(1) charges vanish. This would be the analogue

of enforcing the linearization-stability constraints in the gravitational theory.

It is enlightening to begin by discussing the energy, Qlin
η1 . It is clear that the con-

straint Qlin
η1 = 0 admits a large space of solutions. Consider for example any complex-

frequency mode that satisfies any of the time-independent boundary conditions described

in section 3.2. On general grounds, time-independent boundary conditions conserving the

Klein-Gordon norm also conserve energy. But since the mode has complex frequency, its

charge Qlin
η1 must increase (or decrease) exponentially in time. Hence, Qlin

η1 = 0 for such

modes. Furthermore, linear combinations of growing and decaying modes can have either

sign of the energy, so there is much freedom in solving this constraint.

Suppose that we now take the surface Σ on which the charges are evaluated to be just

t = 0. Since the dilatation η0 is spacelike at t = 0 (see figure 1), the associated charge

Qlin
η0 is effectively a momentum and one can find zero-energy solutions having either sign

of this charge. It is then straightforward to find a linear combination CΦ1 +DΦ2 of two

zero-energy modes having different values of ℓ,m for which Qlin
η0 vanishes at t = 0. Using

£η1Φj = −iωΦj , the SL(2,R) algebra, and the fact that modes with distinct (ℓ,m) are

orthogonal under ΩΣ, it then follows that Qlin
η−1

also vanishes for CΦ1 + DΦ2. The final

constraint Qlin
ξ0

= 0 can be satisfied by combining two such solutions with opposite signs

of m. As a result, the full set of linearization-stability constraints at t = 0 admits a large

space of simultaneous solutions.

However, the charges Qlin
η0 and Qlin

η−1
are not conserved by the boundary conditions of

section 3.2. The problem can be stated in simple physical terms. To do so, recall from [2]

that timelike geodesics (i.e., particle trajectories) in the extreme Kerr throat can reach the

boundary in finite coordinate time t. Recall also that such geodesics are associated with

oscillatory modes via the WKB approximation. As a result, the r = ∞ boundary acts

like a wall at finite distance with respect to such modes. Any boundary condition that

conserves the Klein-Gordon norm effectively causes particles to reflect off of this boundary,

perhaps with some phase shift. Now, we noted above that η0 is spacelike at t = 0, and

that the associated Qlin
η0 is therefore a sort of momentum. But it is clear that reflections off

of a finite-distance wall cannot conserve momentum: particles incident on the wall arrive

from the bulk (say, to the left of the wall) and so necessarily have one sign of momentum.
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Particles leaving the wall must return to the bulk and so necessarily have the opposite sign.

In much the same way, direct calculation shows that the flux of Qlin
η0 due to the oscillatory

modes through the surface r = ∞ is positive definite (for real solutions) at t = 0. At general

t (and for general complex solutions), one may construct a positive-definite combination of

this flux (Fη0) and the energy flux (Fη1). The same is true for Qlin
η−1

:

(Fη0 − tFη1)oscillatory ∝
∑

m,ℓwithKm,ℓ<Kcrit

(|Am,ℓ|2 + |Bm,ℓ|2)k2 , (3.20)

(Fη−1 − t2Fη1)oscillatory ∝
∑

m,ℓwithKm,ℓ<Kcrit

(|Am,ℓ|2 + |Bm,ℓ|2)k2t . (3.21)

For any Dirichlet-type boundary conditions, the flux from power law modes vanishes.

As a result, for such boundary conditions the only solution satisfying the constraints at

all times is Φ = 0. It is worth noting, however, that this amounts to a failure of the

Cauchy problem for such boundary conditions: We have valid initial data which satisfies

all constraints and boundary conditions at t = 0. However, there is no evolution of this

data which satisfies the boundary conditions for all t.

The reader may wonder whether some more general boundary condition would allow

additional solutions. For example, one might ask if a nonlinear boundary condition for each

mode could preserve the SL(2,R) symmetries. However, this would require Aℓ,m ∝ B
1−2ik
1+2ik

ℓ,m ,

which does not conserve the appropriate flux.8

Returning to linear boundary conditions, one might also try to allow suitable linear

combinations of fast- and slow-fall-off solutions with µ < 1/2. Indeed, the fluxes from

power law modes satisfy

(Fη0 − tFη1)power law ∝
∑

m,ℓwithKm,ℓ>Kcrit

αm,ℓ|Am,ℓ|2k2 , (3.22)

(Fη−1 − t2Fη1)power law ∝
∑

m,ℓwithKm,ℓ>Kcrit

αm,ℓ|Am,ℓ|2k2t, (3.23)

and in particular are negative for modes with αm,ℓ < 0. While we have not analyzed this

possibility in full detail, it is difficult to imagine a boundary condition which achieves this

while simultaneously conserving Klein-Gordon flux. In particular, while one can tune the

magnitudes of the frequencies |ω| of the unstable modes (in both power law and oscillatory

cases) through a choice of boundary condition, at least with the boundary conditions of

section 3.2 the phase of ω is a fixed, complicated function of m,µ. It is therefore difficult

to cancel the flux due to an unstable oscillatory mode against the flux from an unstable

power law mode for all times. This is an interesting departure from the analogy with AdS2

in the presence of scalars both just above and just below the BF bound. In that case,

the unstable frequencies were always purely imaginary and one could easily find boundary

conditions which admit solutions where all charges vanish for all time.

8The analysis of non-linear boundary conditions is similar to that of linear boundary conditions. Sym-

plectic flux would be conserved for power law modes only if small variations δAℓ,m and δBℓ,m are related

by a phase. Even for real Bℓ,m, this is true for Aℓ,m ∝ B
1−2ik

1+2ik

ℓ,m only for k = 0, a special case which requires

separate analysis due to the appearance of a logarithmic mode.
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4 Linearized gravitational perturbations

We now analyze linearized gravitational waves in the NHEK background, adapting tech-

nology developed by Teukolsky [21] for perturbations of asymptotically flat Kerr black

holes. While a straightforward analysis of linearized gravity leads to separable, decoupled

equations for highly symmetric backgrounds like Schwarzschild [39], the same is not true

for Kerr. Instead, a more subtle approach is required. Teukolsky showed that the essen-

tial field equations for spin 0,±1/2,±1,±2 decouple using a Newman-Penrose approach,

and that separating variables then leads to ordinary differential equations as usual. The

Newman-Penrose null tetrad formalism [24] is briefly reviewed in appendix A.

The main result of this section is that the behavior of linearized gravitons (up to

linearized diffeomorphisms) is directly analogous to that found in section 3 for linear scalar

fields: Modes with large m and small K oscillate near infinity. For such modes, the flux

of the linearized charge Qlin
η0 is positive definite. It is difficult to balance this positive

flux against a negative flux from power law modes, and impossible for the analogue of

generalized Dirichlet boundary conditions. We therefore expect that, when the full set

of non-linear couplings are taken into account, the only linearized solutions satisfying all

linearization-stability constraints will be linearized diffeomorphisms.

4.1 Spin-s Teukolsky equations

In the Newman-Penrose formalism, the gravitational field is described in part by the scalars

ψ0, ψ1, ψ2, ψ3, ψ4, which are certain components of the Weyl tensor. For the Kerr back-

ground, it turns out that all of these scalars vanish except ψ2; as noted in [40], the fact

that many background quantities vanish is a promising signal that the perturbation analy-

sis in these new variables will simplify. Indeed, both Schwarzschild and Kerr are classified

as type D spacetimes, and so within the Newman-Penrose framework, the rotating and

non-rotating cases are actually quite similar.

For the case of interest, spin ±2, solutions to the Teukolsky equation only give us the

form of the Weyl scalars ψ0, ψ4, and one may question if this is enough to fully specify the

gravitational perturbations. In fact, it was shown by Wald that physical graviton fluctua-

tions of Kerr are encoded entirely in either ψ0 or ψ4, which are invariant under linearized

diffeomorphisms. The only perturbations with ψ0 = ψ4 = 0 are i ) deformations that either

change the mass or angular momentum of the Kerr black hole, ii ) a linearized deformation

towards the rotating C-metric, or iii ) a linearized deformation adding NUT charge [40].

Solutions of the Teukolsky equation in the NHEK geometry will therefore provide all

nontrivial perturbations up to diffeomorphisms; i.e., up to the possible presence of boundary

gravitons. To carefully analyze valid boundary conditions, it is also useful to have a method

of translating from the Weyl scalars to actual metric fluctuations. Fortunately, the details of

this “inversion problem” have been worked out for the full Kerr geometry in [43], so one sim-

ply has to take the appropriate limit of this procedure to find the NHEK metric fluctuations.

We now briefly review the Teukolsky equations [21] for the Kerr background in Boyer-

Lindquist coordinates (t̃, r̃, θ, φ̃). The Teukolsky equations for spin s are differential equa-

tions for certain scalar quantities ψ(s). For gravitational perturbations in particular, we
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have ψ(2) = ψ0 and ψ(−2) = ρ−4ψ4, where ρ is the spin coefficient defined in appendix A.

Separating variables as ψ(s) = e−iω̃t̃+imφ̃Rs(r̃)Ss(θ), the spin-s Teukolsky equations are

∆
d2Rs
dr̃2

+ 2(s + 1)(r̃ −M)
dRs
dr̃

+

(

C2 − 2is(r̃ −M)C

∆
+ 4isω̃r̃ − Λ

)

Rs = 0, (4.1)

1

sin θ

d

dθ

(

sin θ
dSs
dθ

)

+

(

a2ω̃2 cos2 θ − m2

sin2 θ
− 2aω̃s cos θ

−2ms cos θ

sin2 θ
− s2 csc2 θ − m2

4
+K

)

Ss = 0 , (4.2)

where

∆ = r̃2 − 2Mr̃ + a2 , C = (r̃2 + a2)ω̃ − am (4.3)

and

Λ = K −m2/4 + a2ω̃2 − 2amω̃ − s(s+ 1) . (4.4)

Our eigenvalue K is related to the Teukolsky eigenvalue A by A = K−m2/4− s(s+ 1), so

that in the near horizon limit, we recover the s = 0 equation given in [2]. It is worth noting

that our constant K is not at all related to Teukolsky’s K, which has radial dependence.

To find the near-horizon form of these equations for extreme Kerr, we apply the change

of variables (2.4) and define a shifted frequency ω through ω̃ = λω + m/(2M). For con-

venience, we set the length scale r0 to unity, r20 = 2M2 = 1. As in the scalar case, this

can be done with the simple rescaling of r → r0r, ω → ω/r0. Taking the limit λ→ 0, the

Teukolsky equations become

r2R′′
s + 2r(1 + s)R′

s +

(

2m2 −K + s(1 + s) +
2ω(m− is)

r
+
ω2

r2

)

Rs = 0 (4.5)

1

sin θ

d

dθ

(

sin θ
dSs
dθ

)

−
(

m2 + s2 + 2ms cos θ

sin2 θ

)

Ss

+

(

m2

4
cos2 θ −ms cos θ

)

Ss +

(

K − m2

4

)

Ss = 0 . (4.6)

The radial equation (4.5) is simply a deformation of the scalar wave equation in

Poincaré coordinates, and the exact solutions are discussed in the next section. The large

r behavior is easily seen to be

Rs ≈ r∆, ∆ = −1

2
− s+ µ , (4.7)

where again µ2 = K − 2m2 + 1/4. For K < Ks
crit = 2m2 − 1/4, one finds complex

exponents in parallel with the oscillatory scalar modes and with scalars in AdS below the

Breitenlohner-Freedman bound.

The angular wave equation is a deformation of the equation describing spin-weighted

spherical harmonics sY
m
ℓ = Y (θ)eimφ, where

1

sin θ

d

dθ

(

sin θ
dY

dθ

)

−
(

m2 + s2 + 2ms cos θ

sin2 θ

)

Y = −ℓ(ℓ+ 1)Y, (4.8)
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and the eigenvalues take the familiar form

ℓ = |s|, |s| + 1, . . . , −ℓ ≤ m ≤ +ℓ . (4.9)

As a result, for axisymmetric perturbations (i.e., m = 0), the exact solutions to the angular

Teukolsky equation are just sY
0
ℓ with K = ℓ(ℓ+ 1). While a full analytic treatment is not

available for m 6= 0, as in section 3 we can consider the regime ℓ = m ≫ 1 with modes

localized near the equator. We again find the eigenvalues Kℓ=|m|≫1 = 5/4m2 + O(m),

which correspond to µ =
√

3
2 im+ O(1).

4.2 Solving the radial wave equation

To solve the radial equation, we define a new function M(r) = rsR(r) and make the change

of variable z = −2iω/r. The wave equation then takes the form

M ′′(z) +

(

−1

4
+
im+ s

z
+

1/4 − µ2

z2

)

M(z) = 0 . (4.10)

In general, the linearly independent solutions are given by the Whittaker functions

Mim+s,µ(−2iω/r) and Wim+s,µ(−2iω/r). Below we restrict to the generic case 2µ /∈ Z.

Similar results hold for the special cases 2µ ∈ Z so long as µ 6= 0. We assume below that

the complicated spectrum of K on the squashed sphere forbids the logarithmic case µ = 0.

The condition that modes with Im[µ] > 0 be normalizeable on the Poincaré horizon

requires

R(r) ∝ r−sWim+s,µ(−2iω/r), Im[ω] > 0. (4.11)

As r → ∞, this solution behaves as Ar−1/2−s+µ+Br−1/2−s−µ, with the ratio of coefficients

A

B
= −Γ(1 + 2µ)Γ(1

2 − im− s− µ)

Γ(1 − 2µ)Γ(1
2 − im− s+ µ)

(2|ω|)−2iµe−2µ(γ−π/2), (4.12)

where we have written the frequency as ω = |ω|eiγ for some phase π > γ > 0. Note that

the restriction on the range of γ means that, for unstable modes, A/B can take values

only in half of the complex plane. An analogous condition holds for Im[ω] < 0. There is

no such requirement for real frequencies, so that the cases γ = 0, π are also allowed. See

e.g. [41, 42] for similar discussions in the context of asymptotically flat Kerr black holes.

4.3 Construction of the metric perturbation

In order to analyze boundary conditions for asymptotically NHEK solutions, we would like

to know the large r behavior of the actual metric perturbations hab. Due to certain spe-

cial properties of the Teukolsky differential operators, it turns out that one can solve this

“inverse” problem simply by taking various derivatives of the solutions to the Teukolsky

equations. This was first argued in [43] using Green’s functions for the gravitational pertur-

bations, and then more generally using self-adjointness properties of the equations in [44].

The key result for constructing metric perturbations about the Kerr spacetime is [43]

hab = {−lalb(δ∗ + α+ 3β∗ − τ∗)(δ∗ + 4β∗ + 3τ∗) −m∗
am

∗
b(D − ρ∗)(D + 3ρ∗)

+l(am
∗
b)[(D + ρ− ρ∗)(δ∗ + 4β∗ + 3τ∗) + (δ∗ + 3β∗ − α− π − τ∗)(D + 3ρ∗)]}

×R−2(r̃)S2(θ)e
imφ̃−iωt̃. (4.13)
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This gives a solution to the linearized Einstein equations in an “ingoing” gauge, satisfying

habl
b = 0 = haa. Note that this relation involves the solutions to the s = −2 radial

equation and the s = +2 angular equation. We denote the metric perturbation built from

Mim+s,µ as h
(µ)
ab where µ can have either sign and be either real or imaginary.

To compute this metric perturbation in the near-horizon spacetime, we use results

for the NHEK tetrad and spin coefficients given in appendix A, combined with the radial

solutions discussed in the previous section. For large r, we find that the perturbation

behaves as

h
(µ)
ab =











htt = O(r3/2+µ) htr = O(r−1/2+µ) htθ = O(r1/2+µ) htφ = O(r1/2+µ)

hrr = O(r−5/2+µ) hrθ = O(r−3/2+µ) hrφ = O(r−3/2+µ)

hθθ = O(r−1/2+µ) hθφ = O(r−1/2+µ)

hφφ = O(r−1/2+µ)











.

(4.14)

For the special range Re[µ] < 1/2 (see below), the components h
(µ)
ab are each subleading in r

to the corresponding NHEK background metric components (for the non-zero components

of (2.5)).

Since the solutions come in pairs with values ±µ, the natural analogue of Dirichlet

boundary conditions would be to forbid all modes with Re[µ] > 0; i.e., one would require

the full perturbation to satisfy (4.14) with µ = 0. We term these “Teukolsky-Dirichlet

boundary conditions.” However, as in our discussion of scalar fields, one still requires some

additional boundary condition for modes with imaginary µ.

4.4 The inner product and boundary conditions

In this section, we investigate valid boundary conditions for linearized metric perturbations

in the NHEK geometry. We must impose boundary conditions so that the inner product

(technically, the symplectic structure) is both finite and conserved. This is the key condition

ensuring that our theory has a well-defined phase space. For scalar fields, the symplectic

structure is simply the familiar Klein-Gordon inner product which we discussed in section 3.

Following [3], we will adopt the covariant phase space formalism of [26, 45], in which the

symplectic current for metric perturbations in Einstein-Hilbert gravity takes the form

ωaEH [δ1g, δ2g] = −P abcdef (δ2gcd∇bδ1gef − (1 ↔ 2)) , (4.15)

where

P abcdef =
1

32πG

(

gabge(cgd)f + gcdga(egf)b + gefga(cgd)b

−gabgcdgef − ga(egf)(cgd)b − ga(cgd)(egf)b
)

. (4.16)

Note that this leads to a symplectic structure that differs from [46] by a boundary term.

It might also be interesting to explore the addition of further boundary “counter-terms”

in analogy with those studied in [47] for AdS, but we will not do so here.

Let Σ be a constant-time hypersurface with unit normal ta. Then, given a background

metric g and two linearized perturbations δ1g, δ2g, the symplectic structure associated
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with Σ is

ΩΣ(g; δ1g, δ2g) =

∫

Σ
dθdφdr

√
gΣ taω

a(g; δ1g, δ2g) . (4.17)

One has ∇aω
a = 0 for perturbations satisfying the linearized equations of motion. As

usual, normalizeability at the horizon implies that the symplectic flux through the horizon

vanishes. Hence, ΩΣ will be conserved if the flux F through the boundary at r → ∞
vanishes at each time. Letting ra denote the unit normal and γab the induced metric on

constant r surfaces, this flux is

F(g; δ1g, δ2g) =

∫

r=∞
dθdφ

√−γ raωa(g; δ1g, δ2g) . (4.18)

Using (4.17), one finds that the h(µ) Teukolsky metric perturbations (4.14) are nor-

malizeable only when Re[µ] < 1/2. Note that this range includes all the oscillatory modes

(K < Kcrit), which are characterized by a purely imaginary µ. For real µ with |µ| ≥ 1/2,

normalizeability requires that the slow fall-off mode (µ > 0) be fixed (i.e., a Dirichlet-type

boundary condition).

For real µ, 0 ≤ |µ| < 1/2, both linearly independent ±µ modes are normalizeable

and we have a choice of boundary conditions at infinity. This is very much analogous to

the mass range near the Breitenlohner-Freedman bound for scalar fields in AdS. A natural

choice is to allow only the “fast fall-off mode” (µ < 0) for real µ; i.e., Teukolsky-Dirichlet

boundary conditions. For imaginary µ, both modes are normalizeable and there is no

distinguished boundary condition. We once again expect instabilities for this case.

It is illustrative to consider boundary conditions which act separately on each har-

monic on the squashed sphere; i.e., which leave modes with different values of ℓ,m un-

coupled. Since we work in the linearized theory, we consider linear boundary conditions:

Aℓ,m = αℓ,mBℓ,m. To determine the allowed coefficients αℓ,m, consider the flux due to

the symplectic product between an oscillatory mode with µ = ik, k ∈ R and the complex

conjugate of an oscillatory mode with µ = ik′, k′ ∈ R (it is sufficient to consider modes

with the same m since the flux clearly vanishes otherwise). We have

F(A1h
(ik) +B1h

(−ik), A∗
2h

(ik′)∗ +B∗
2h

(−ik′)∗)

= A1B
∗
2F(h(ik), h(−ik′)∗) +B1A

∗
2F(h(−ik), h(ik′)∗) +A1A

∗
2F(h(ik), h(ik′)∗)

+B1B
∗
2F(h(−ik), h(−ik′)∗). (4.19)

Explicit computation shows that this expression always vanishes unless k = k′ due to

orthogonality of the angular functions S(µ)(θ). In this case, the first two terms are each

zero due to the anti-symmetry of the symplectic structure. We must then choose the

boundary condition for this mode so that the last two terms cancel. This fixes the relevant

value of α = A1/B1 = A2/B2. After some lengthy calculations, we find

|α|2 =
9 + 40(k +m)2 + 16(k +m)4

9 + 40(k −m)2 + 16(k −m)4
. (4.20)

We see that the allowed boundary conditions of the above form are parametrized by a

choice of phase for each mode.
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Once an α satisfying (4.20) is chosen, the spectrum of frequencies ω = |ω|eiγ can be

determined. Since (4.20) is independent of ω, all real frequencies (γ = 0) are allowed.

Recall, however, that for complex frequencies we have an additional constraint (4.12) on

|α|2 from regularity of the Teukolsky scalar at the horizon. Using that the radial Teukolsky

function solves the s = −2 radial equation, for Im[ω] > 0 this constraint yields

|α|2 =

∣

∣

∣

∣

A

B

∣

∣

∣

∣

2

= e2k(2γ−π)

(

9 + 40(k +m)2 + 16(k +m)4

9 + 40(k −m)2 + 16(k −m)4

)

cosh(π(k −m))

cosh(π(k +m))
. (4.21)

Remarkably, the complicated ratio of polynomials in k,m cancels when one compares (4.21)

with (4.20). What remains is a restriction on the phase γ of the complex frequency ω =

|ω|eiγ which is precisely the same as in the scalar field case:

γ =
π

2
+

1

4k
ln

(

coshπ(k +m)

coshπ(k −m)

)

. (4.22)

Choosing a time-independent phase for α = A/B then leads to a quantization condition on

the magnitudes of the complex frequencies |ω| through the restriction that (4.12) has the

correct phase. One may also choose a time-dependent phase, though of course this breaks

time-translation symmetry so that modes with definite frequency are no longer solutions.

For the power law modes with µ, µ′ < 1/2, one can perform a similar calculation of

the flux F(A1h
(µ) +B1h

(−µ), A∗
2h

(µ′)∗ + B∗
2h

(−µ′)∗). Once again, F = 0 when µ 6= µ′. For

µ = µ′, imposing a boundary condition A1 = αB1, A2 = αB2 as above now restricts the

phase (rather than the magnitude) of α:

α

α∗ =
9 + 40(m − iµ)2 + 16(m − iµ)4

9 + 40(m + iµ)2 + 16(m + iµ)4
. (4.23)

Note that two opposite phases are allowed by (4.23). But it was noted below (4.12) that

unstable solutions exist only when α lies in some particular half of the complex plane.

Thus, just as in the scalar case, one choice of phase leads only to stable modes, while the

other again leads to a single unstable mode with γ given by (3.16). Perhaps the most

natural choice for α is the Teukolsky-Dirichlet boundary condition α = 0 (equivalently,

A = 0), where we now take µ > 0. While (4.23) degenerates for this case, one may note

that (4.12) admits no solutions. As a result, only real frequencies are allowed.

4.5 Charges and constraints

Finally, we discuss the linearized charges of the above solutions in connection with the

conjectured linearization-stability constraints. Recall that the condition that the charges

generate ξ-translations, and the fact that the symplectic structure is the inverse of the

Poisson bracket, imply that the linearized charge associated with an isometry ξ can be

written in terms of the symplectic structure about the background ḡ as

Qlin
ξ =

1

2
Re ΩΣ(ḡ;£ξh, h

∗) . (4.24)

It is enlightening to begin by discussing the energy, Qlin
η1 . Note that Qlin

η1 is conserved

under any boundary conditions for which i) the symplectic structure Ω is conserved and
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ii) the boundary conditions are invariant under η1, so that £η1h satisfies the boundary

conditions whenever h does. This is the case for the time-independent boundary conditions

discussed in section 4.4.

As a result, it is clear that the linearization-stability constraint Qlin
η1 = 0 admits a large

space of solutions. Consider for example any mode with complex frequency. The charge

Qlin
η1 carried by any such mode must increase (or decrease) exponentially in time. But it

is also conserved. Hence, Qlin
η1 = 0 for such modes. Furthermore, linear combinations of

growing and decaying modes can have either sign of the energy, so there is much freedom

is solving this constraint.

Suppose that we now take the surface Σ on which the charges are evaluated to be just

t = 0. Since the dilatation charge η0 is spacelike at t = 0 (see figure 1), it is clear that one

can find unstable modes of the type discussed above having either sign of the η0 charge.

It is then straightforward to find a linear combination Ch1 +Dh2 of two unstable modes

having different values of ℓ,m for which Qlin
η0 vanishes at t = 0. Using £η1hj = −iωhj, the

SL(2,R) algebra, and the fact that modes with distinct (ℓ,m) are orthogonal under ΩΣ, it

follows that Qlin
η−1

also vanishes for Ch1 +Dh2. The final constraint Qlin
ξ0

= 0 can then be

satisfied by combining two such solutions with opposite signs of m. As a result, at t = 0

there is a large space of simultaneous solutions to the linearization-stability constraints.9

However, as with our prior discussion of the scalar field, the charges Qlin
η0 and Qlin

η−1
are

not conserved by the boundary conditions of section 4.4. The problem is again that con-

servation of symplectic flux requires fixing the phase of each αℓ,m for the oscillatory modes,

but that this breaks the symmetries generated by η0 and η−1. In fact, before imposing any

boundary condition, the fluxes Fη0 = Re F(ḡ;£η0h, h
∗) and Fη1 = Re F(ḡ;£η1h, h

∗) of

Qlin
η0 and the energy Qlin

η1 can be shown to satisfy

(Fη0 − tFη1)oscillatory =
∑

ℓ,m with Kℓ,m<Kcrit

k2

4

[(

9 + 40(k −m)2 + 16(k −m)4
)

|Aℓ,m|2

+
(

9 + 40(k +m)2 + 16(k +m)4
)

|Bℓ,m|2
]

, (4.25)

which is positive definite. In contrast, this combination of fluxes vanishes for power law

modes under boundary conditions which, for each (ℓ,m), allow only h(µ) or h(−µ). In

the range µ real, |µ| < 1/2, where both modes are normalizeable, linear combinations

Ah(µ) +Bh(−µ) can have either sign of this flux.

Since we must impose the constraints Qlin
ηi

= 0 at all times, (Fη0 − tFη1) must vanish

at each t. From the above discussion, it is clear that this is not possible under Teukolsky-

Dirichlet type boundary conditions ((4.14) with µ = 0), as these forbid the slow fall-off

solutions h(|µ|) for power law modes. One might have thought that this was the most

9The use of modes of definite frequency satisfying given boundary conditions was merely a technical

crutch in the above argument; the result holds for very general boundary conditions. Consider for example

some strict Dirichlet boundary condition that fixes h = 0 at a large but finite value rDir of r. The spectrum

will include both stable and unstable modes, allowing solutions to the constraints to be constructed as

above. We can then extend the corresponding initial data to all r by simply taking it to vanish for r > rDir.

The resulting data has a discontinuity in its first r-derivative at r = rDir, but nevertheless continues to

provide a solution to the t = 0 linearization-stability constraints.

– 25 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
4

natural possible boundary condition. However, we now see that flux conservation for Qlin
η0

forces all oscillatory modes to vanish, and that the energy constraint Qlin
η1 = 0 then forces

all power law modes to vanish (since they are stable, they carry only positive energy). As

a result, Teukolsky-Dirichlet boundary conditions allow only the trivial solution h = 0.

The reader may wonder whether some more general boundary condition would allow

additional solutions. In particular, one might try to allow suitable linear combinations

Ah(µ) + Bh(−µ) of power law modes for µ < 1/2, hoping to cancel their negative η0-

flux against the positive η0-flux from oscillatory modes. While we have not analyzed this

possibility in full detail, it is difficult to imagine a boundary condition which achieves this

while simultaneously conserving symplectic flux. In particular, while one can tune the

magnitudes of the frequencies |ω| of unstable modes (in both power-law and oscillatory

cases) through a choice of boundary condition, at least with the boundary conditions of

section 4.4 the phase of ω is a fixed, complicated function of m,µ. It is therefore difficult

to cancel the flux due to an unstable oscillatory mode against the flux from an unstable

power law mode for all times.

5 Discussion

We have argued that dynamics in the extreme Kerr throat is highly constrained. We

found that scaling limits of non-extreme Kerr black holes also yield the NHEK geometry,

but in coordinates with a finite temperature horizon. We then proved that the only

stationary, axisymmetric, asymptotically-NHEK solutions with smooth horizons are

diffeomorphic to NHEK. Since we expect charges to be captured by highly symmetric

solutions, this result strongly suggests that dynamics in the NHEK background are

subject to linearization-stability constraints associated with the full set of SL(2,R)×U(1)

isometries. Considering simple scaling limits of perturbed asymptotically flat Kerr black

holes lent additional support to this hypothesis. Subtleties involving boundary gravitons

were discussed in section 2.4.

We then explored scalar and tensor perturbations in sections 3 and 4, finding that

the linearization-stability constraints greatly restricted the solutions. In particular, we saw

that generalized Dirichlet boundary conditions for scalars or Teukolsky-Dirichlet boundary

conditions for tensors were consistent only with trivial solutions: Φ = 0, or h = 0 up to

linearized diffeomorphisms. It remains possible that some more general set of boundary

conditions allowing the fields to fall-off more slowly at infinity would allow non-trivial

solutions, though we consider this unlikely.

However, we did find a large family of solutions satisfying Teukolsky-Dirichlet boundary

conditions which solved all constraints at t = 0. The problem was that boundary conditions

conserving symplectic flux (Klein-Gordon flux for scalars) tended not to preserve the full

SL(2,R) symmetry. As a result, certain SL(2,R) charges were not naturally conserved.

Requiring the associated charges to vanish at all times was thus a much stronger constraint

than just imposing them at t = 0, leading to the paucity of solutions described above. We

noted that this amounts to a failure of the Cauchy problem for such boundary conditions

at the non-linear level.
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It is interesting to reflect on the implications for the conjectured Kerr/CFT correspon-

dence of [3]. Before doing so, however, we must reconcile the boundary conditions used

in various parts of this work with those used in [3]. While our basic scaling arguments

(section 2.2) did not rely on any particular boundary conditions, the uniqueness theorem

for stationary axisymmetric asymptotically NHEK solutions with smooth horizons required

that the metric approach (2.4) at large r. In contrast, the fall-off conditions of [3] (which

we call GHSS fall-off) allow departures in the leading terms of certain components of the

metric. While such cases were not included in our analysis, we believe that a similar unique-

ness theorem should nevertheless hold. In particular, recall that appendix A of [3] studied

precisely these departures from (2.4) in the limit where they are small. The linearized Ein-

stein equations then implied that such terms were determined by a single function f(t, φ).

In order for ∂t and ∂φ to remain symmetries, this function must be constant. But one may

also show that any non-zero constant forces the energy to diverge. While it remains to

perform a complete non-linear analysis, we take this as evidence that GHSS fall-off allows

no new stationary axisymmetric solutions. While [3] also imposed the constraint Q∂t = 0,

we expect that no generalization to the case Q∂t 6= 0 is possible. We also expect the other

SL(2,R) charges to vanish for all smooth solutions consistent with GHSS fall-off.

As a result, we are led to the same linearization-stability constraints studied in sec-

tions 3 and 4, but now subject to boundary conditions implied by GHSS fall-off. In 4, we

argued that the constraints admit no non-trivial solutions, up to linearized diffeomorphisms.

These arguments were definitive for boundary conditions that allow only modes with

Re[µ] ≤ 0. Now, it is clear from (4.14) that, at least as written in our in-going gauge, modes

h
(µ)
ab are only compatible with GHSS fall-off when Re[µ] is sufficiently negative. But one can

nevertheles ask if modes with Re[µ] > 0 might be made compatible by the application of a

linearized diffeomorphism. It turns out that this is not possible, as can be shown by using

the fact that ψ0, ψ4 are invariant under linearized diffeomorphisms. Evaluating ψ0, ψ4 for

GHSS fall-off gives behavior inconsistent with that of h
(µ)
ab for Re[µ] > 0 (in fact for Re[µ] >

−1/2). Thus, only pure linearized diffeomorphisms can satisfy the constraints at all times.

This makes the situation similar to that of chiral gravity [20], in that the boundary

conditions remove potential instabilities. On the other hand, there are also two significant

differences from the chiral gravity case: First, the price of removing these instabilities is an

apparent lack of a good Cauchy problem (see again footnote 9 from section 4.5). Second,

in contrast to the fact that chiral gravity admits BTZ black holes, in the present context

all stationary axisymmetric black hole solutions are diffeomorphic to the original extreme

throat. As a result, it is indeed natural to consider the NHEK geometry to be a ground

state as suggested in [3]. It will be interesting to see whether these features play a role in

future Kerr/CFT developments.

Finally, the reader may wonder how our results generalize to spacetimes constructed

from near-horizon limits of other rotating black holes. For definiteness, we confine our com-

ments to the 3+1 Kerr-Newman case. The near-horizon limit of extreme Kerr-Newman for

general angular momentum J and charge Q was analyzed in [2, 48] where it was found that

the asymptotic structure is very similar to that of (2.5). We therefore expect a similar set

of linearization-stability constraints. One difference, however, is that when J/Q2 becomes
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smaller than the critical value 2/3 (i.e., close enough to the Reissner-Nordstrom solution),

the velocity of light surface in the asymptotically flat extreme black hole detaches from the

horizon. As a result, for small J/Q2 the near-horizon solution does have a globally timelike

or null Killing field. We therefore expect no negative energy perturbative excitations for

uncharged scalars and gravitons, so that imposing even just the constraint Q∂t = 0 at a sin-

gle time should forbid all linearized solutions. This is not yet the end of the story, however,

as Einstein-Maxwell theory has extreme black holes. An effective quantum description of

these black holes should involve charged fields (with charges q = m). Since q = m scalar

fields exhibit superradiance near any extreme Kerr-Newman black hole with J 6= 0, we

would expect the inclusion of quantum effects involving extreme black holes to make all

cases with J 6= 0 similar to that of the Q = 0 extreme Kerr throat analyzed in this work.

Note Added. During the completion of this work, we learned of [49], which has some

overlap with our discussion above.
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A The Newman-Penrose tetrad and the NHEK geometry

A Newman-Penrose tetrad [24] consists of two real null vectors l, n, and one complex null

vector m satisfying10

l · n = −m ·m∗ = −1 . (A.1)

All other inner products are zero. It follows that the inverse metric can be expressed in

the form

gab = −lanb − nalb +mam∗b +m∗amb . (A.2)

It is convenient to define a set of differential operators given by taking partial derivatives

in the tetrad directions:

D = la
∂

∂xa
, ∆ = na

∂

∂xa
, δ = ma ∂

∂xa
, δ∗ = m∗a ∂

∂xa
. (A.3)

10Our definitions for the Newman-Penrose formalism are consistent with (− + ++) metric signature

(see e.g., [50]). Note that there are thus certain sign differences with respect to the definitions in [21], as

Teukolsky works in (+ −−−) signature.

– 28 –



J
H
E
P
0
9
(
2
0
0
9
)
0
4
4

The connection is expressed in terms of the “spin coefficients,” which are defined as

−κ = la;bm
alb, ν = na;bm

∗amb,

−ρ = la;bm
am∗b, µ = na;bm

∗amb,

−σ = la;bm
amb, λ = na;bm

∗am∗b,

−τ = la;bm
anb, π = na;bm

∗alb,

−ǫ =
1

2
(la;bn

alb −ma;bm
∗alb), −γ =

1

2
(la;bn

anb −ma;bm
∗anb),

−α =
1

2
(la;bn

am∗b −ma;bm
∗am∗b), −β =

1

2
(la;bn

amb −ma;bm
∗amb). (A.4)

Here the semi-colon denotes a covariant derivative, e.g. la;b = ∇bla. The Newman-Penrose

Weyl scalars are given by certain components of the Weyl tensor:

ψ0 = Cabcdl
amblcmd, ψ1 = Cabcdl

anblcmd,

ψ2 =
1

2
Cabcd(l

anblcnd − lanbmcm∗d),

ψ3 = −Cabcdlanbncm∗d, ψ4 = Cabcdn
am∗bncm∗d. (A.5)

For Kerr spacetime in Boyer-Lindquist coordinates (t̃, r̃, θ, φ̃), the “Kinnersley tetrad” is

la = [(r̃2 + a2)/∆, 1, 0, a/∆],

na = [r̃2 + a2,−∆, 0, a]/(2Σ), (A.6)

ma = [ia sin θ, 0, 1, i csc θ]/
√

2(r̃ + ia cos θ), (A.7)

where ∆ = r̃2 − 2Mr̃ + a2 and Σ = r̃2 + a2 cos2 θ.

Under the coordinate change (2.4) we find l ∝ 1/λ, n ∝ λ, and so we require a tetrad

rotation l → λl, n→ n/λ before taking the limit λ→ 0. Thus, in the coordinates (t, r, θ, φ)

(with 2M2 = 1), we take the null tetrad in the NHEK geometry to be

la = [1/r2, 1, 0,−1/r],

na = [1/(1 + cos2 θ),−r2/(1 + cos2 θ), 0,−r/(1 + cos2 θ)],

ma = [0, 0,−i/(cos θ − i), (cos θ + i)/(2 sin θ)]. (A.8)

The non-zero spin coefficients for the NHEK spacetime are then

β =
cot θ

2(1 + i cos θ)
, π =

i sin θ

1 − i cos θ
, τ = − i sin θ

1 + cos2 θ
,

γ =
r

1 + cos2 θ
, α = π − β∗ . (A.9)

The Weyl scalars are ψ0 = ψ1 = ψ3 = ψ4 = 0 and

ψ2 = − 2

(1 − i cos θ)3
. (A.10)
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B Scalars in global coordinates

This appendix briefly summarizes the behavior of massless scalars in the global NHEK

geometry. Since there are two boundaries (at y = ±∞), we must impose two boundary

conditions. This will lead to a quantized spectrum.

The wave equation again separates in global coordinates. One finds solutions Φ =

e−iωτe+imϕΘ(θ)Y (y) where Θ(θ) satisfies (3.2) and where Y (y) satisfies

(fY ′)′ +

(

1

4
− µ2 −m2 +

(ω +my)2

1 + y2

)

Y = 0. (B.1)

As usual, 2m2 −K = 1/4 − µ2. The asymptotics of (B.1) agree with (3.1) and we again

have Y ∼ y−1/2±µ .

Eq. (B.1) has regular singular points at y = ±i,∞ and has solutions in terms of

hypergeometric functions. Written in terms of z = 1+iy
2 , we have

Y = C1z
im+ω

2 (z − 1)
im−ω

2 2F1

(

1

2
+ im− µ,

1

2
+ im+ µ, 1 + im+ ω; z

)

+C2z
−im−ω

2 (z − 1)
im−ω

2 2F1

(

1

2
− µ− ω,

1

2
+ µ− ω, 1 − im− ω; z

)

. (B.2)

Consider a solution of the form Ay−1/2+µ+By−1/2−µ near y = +∞. It is a straightforward

but tedious calculation to verify that near y = −∞ the solution is of the form Ãy−1/2+µ +

B̃y−1/2−µ, where
Ã

B̃
=
a1A+ a2B

b1B + b2A
, (B.3)

for

a1 = −π
3e−iπµ csc(2πµ)

2
(e2mπ sec π(µ+ ω) sech π(m− iµ)

−e2iπω secπ(µ− ω) sech π(m+ iµ)),

a2 = −µ4−µ(e2mπ − e2πiω)Γ(2µ)2Γ

(

1

2
− im− µ

)

Γ

(

1

2
+ im− µ

)

×Γ

(

1

2
− µ− ω

)

Γ

(

1

2
− µ+ ω

)

b1 = a1(µ → −µ),

b2 = a2(µ → −µ). (B.4)

Since the asymptotics are the same as in the Poincaré case, imposing conservation of

Klein-Gordon flux at each boundary leads to familiar results. Boundary conditions which

leave modes with different (ℓ,m) uncoupled take the form:

power law modes : Aℓ,m/Bℓ,m = αℓ,m, Ãℓ,m/B̃ℓ,m = α̃ℓ,m, αℓ,m, α̃ℓ,m ∈ R

oscillatory modes : Aℓ,m/Bℓ,m = eiβℓ,m, Ãℓ,m/B̃ℓ,m = eiβ̃ℓ,m, βℓ,m, β̃ℓ,m ∈ R. (B.5)

These conditions are difficult to analyze analytically, but fixing α, β, one can numeri-

cally solve for the curves in the complex ω plane where Im(Ã/B̃) = 0 for power-law modes

and |Ã/B̃| = 1 for oscillatory modes. Some typical results are shown in figure 2. Choosing

particular values of α̃, β̃ then selects a discrete set of frequencies along this curve.
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Figure 2. Typical plots of Im[Ã/B̃] for power law modes (left) and |Ã/B̃|−1 for oscillatory modes

(right) over the complex ω plane. The shading denotes positive/negative values. Frequencies that

satisfy boundary conditions which conserve Klein-Gordon flux at the y = +∞ boundary lie on the

boundaries. For each plot, A/B has already been fixed to conserve flux at the other boundary

(y = −∞).
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